

www.adeepakpublishing.com www. JoSSonline.com

Kelly, S. et al. (2021): JoSS, Vol. 10, No. 3, pp. 1097–1108

(Peer-reviewed article available at www.jossonline.com)

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1097

Using a CubeSat Reference Architecture for

Accelerated Model Development and

Analysis
Major Sean Kelly, Dr. David Jacques, Dr. Brad Ayres, Dr. Richard Cobb,

Dr. Thomas Ford
Air Force Institute of Technology

Wright-Patterson AFB, OH US

Abstract

The domain of space systems engineering is currently in transition towards increased use of Model-Based

Systems Engineering (MBSE) tools. This study examines the potential for reference architectures to assist with

this transition by providing a starting point for engineering teams to build from, facilitating rapid design, proto-

typing, and requirement verification and validation. Specifically, this paper describes a current effort to create a

CubeSat reference architecture for use in a university setting, aiming to shorten the development time and improve

model and design quality for teams going through an accelerated design timeline. The present status of this Cube-

Sat reference architecture is described, with two features are highlighted in greater detail: built-in analysis using

parametric diagrams and stakeholder document generation. Future improvements for this reference architecture

are also discussed.

 Introduction

The CubeSat class of nanosatellites has lowered

the barrier of entry to space and has rapidly gained

popularity over recent years. The lower development

cost, small form factor, and use of commercial off-the-

shelf (COTS) components (Karvinen et al., 2015)

make the CubeSat form factor an ideal platform for

university teams, where budget and development time

are extremely limited. In fact, many academic institu-

tions have embraced this field for research, and have

developed their own space programs (Pradhan and

Cho, 2020). To successfully design a CubeSat system

in a rapid cycle conducive to academic timelines, a ref-

erence architecture geared towards university CubeSat

development would be helpful. A reference architec-

ture would further speed up the development process

by providing a template, capturing previous work and

lessons learned from subject matter experts, and

providing the framework to focus on the design, rather

than the intricacies of modeling software. A reference

architecture can also add functionality that student

teams could use and improve over time, such as pre-

built analysis functions and a library of components to

Corresponding Author: Major Sean Kelly - sean.kelly.33@spaceforce.mil

Publication History: Submitted – 02/15/21; Revision Accepted – 09/16/21; Published – 10/29/21

mailto:sean.kelly.33@spaceforce.mil

Kelly, S. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1098

choose from. This paper will discuss the need for a Cu-

beSat reference architecture and explore features of

one developed at the Air Force Institute of Technology

(AFIT) for their space program.

 Model-Based Systems Engineering

The International Council on Systems Engineering

(INCOSE) defines Systems Engineering as "[a]n in-

terdisciplinary approach and means to enable the re-

alization of successful systems" (Walden et al., 2015).

The system, comprised of a collection of hardware,

software, people, facilities, and procedures, begins as

a theoretical concept in the eyes of users or stakehold-

ers, and from that idea needs are defined, a system is

developed and used operationally, and finally retired

or disposed of (Buede and Miller, 2016). Systems En-

gineering is all about addressing this complete life cy-

cle, and there are many strategies and techniques to

accomplish this. The Department of Defense and

NASA have traditionally used a linear, document-

based approach, but they are currently transitioning to

a Model-Based Systems Engineering (MBSE) ap-

proach.

Documents are the primary artifacts available to

stakeholders (Delligatti, 2014) in the traditional ap-

proach, including requirement and traceability matri-

ces, interface documents, concept of operation docu-

ments, and other unique documents in a wide variety

of formats. As systems become more complex, the tra-

ditional document-based approach becomes challeng-

ing to maintain. Each document is manually generated,

so file management and version control are problem-

atic. For example, it is difficult to know for sure if a

file is current or if it has been subsequently updated

but is located on some other file system or storage

drive. Furthermore, any changes in one document,

drawing, etc., must be made in any other document

that contains items affected by the change, or risk mul-

tiple versions of the same document being presented.

This system is prone to errors, inconsistencies, and dif-

ficulties maintaining an accurate representation of the

entire system. MBSE can help mitigate these concerns

by consolidating the source of truth to one file. In

MBSE, a system model represents the system and any

information traditionally needed for documents can be

found within this model. The model becomes the

source of truth instead of the documentation. When in

doubt, the model always has the most current infor-

mation, making it easier to stay consistent. If the mod-

eler updates a component or interface in one area, it

will be updated throughout the system as appropriate.

Acquisition program reviews may still require paper

documents, but the necessary information for those

can still be found within the system model. Note that

teams must still take care to maintain version control

for their system model so multiple versions are not be-

ing used, and cloud-based modeling makes this task

much easier.

MBSE requires a modeling language, a modeling

method, and a modeling tool (Delligatti, 2014). The

CubeSat reference architecture described here was de-

veloped using the Systems Modeling Language and

NoMagic's Cameo Systems Modeler (CSM) tool.

SysML is a standard modeling language that added

systems engineering functionality to the Unified Mod-

eling Language (UML) that has been used extensively

in Software Engineering for decades (Delligatti,

2014). SysML provides a language, or the definitions

and notations for nine different diagram types to de-

scribe a complex system, many of which will be used

in this reference architecture. Model elements are ex-

pressed graphically through those diagrams, with

SysML defining what those model elements are and

how they are expressed. For example, a Block Defini-

tion Diagram (bdd) expresses system structure, and an

Activity Diagram can show specific system behaviors.

Within blocks, further detail can be expressed on an

Internal Block Diagram (ibd). The modeling tool im-

plements the SysML language, which allows for cus-

tom extensions if needed.

The modeling method is the specific methodology

used to ensure that important design tasks have been

accomplished, and provides the general guidance, pro-

cesses, or steps for the system design. This paper will

focus on the Object-Oriented Systems Engineering

Method (OOSEM), but there are other popular meth-

ods, such as the Weilkiens System Modeling (SYS-

MOD) method (Weilkiens, 2016) and the IBM Telelo-

gic Harmony-SE method (Hoffman, 2020).

OOSEM uses SysML in a top-down, model-based

approach that leverages object-oriented concepts with

Using a CubeSat Reference Architecture for Accelerated Model Development and Analysis

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1099

traditional systems engineering methods to architect

more flexible and extensible systems and that can

evolve with technology and changing requirements

(Estefan, 2008). OOSEM was developed in part by

Lockheed Martin Corporation as a method to capture

and analyze requirements of complex systems, inte-

grate with object-oriented software and hardware, and

support system-level reuse and design evolution (Wal-

den et al., 2015).

OOSEM includes the following steps in an itera-

tive fashion (Object Management Group, 2011), all of

which are incorporated into the reference architecture.

1. Analyze Stakeholder Needs: Capture the "as-

is" system and mission enterprise and identify

gaps or issues. The "as-is" depiction helps de-

velop the "to-be" system, and the gaps or issues

can help drive mission requirements for the

new system. OOSEM frequently uses

measures of effectiveness for the primary mis-

sion objectives identified in this step.

2. Define System Requirements: Once the "as-is"

system is defined and produces Mission Re-

quirements, the system is modeled as a "black

box" in a Mission Enterprise model. For exam-

ple, instead of going deep into subsystem-level

detail on a CubeSat, the entire CubeSat will be

a "black box" that interacts with ground sta-

tions, other satellites, and the environment.

This "black box" model allows for system-

level activity diagrams and use cases to show

how the "to-be" system will support the mis-

sion enterprise. This step helps derive system-

level functional, performance, and interface re-

quirements.

3. Define Logical Architecture: A "logical" archi-

tecture is created that captures key functions in

logical blocks, allowing for specific compo-

nents to be chosen later in place of the logical

depiction.

4. Synthesize Candidate Allocated Architectures:

From the logical architecture, potential physi-

cal instantiations are created, using value prop-

erties and selected components. Each compo-

nent at this stage is then traced to system re-

quirements in table or matrix form.

5. Optimize and Evaluate Alternatives: Trade

studies or other analysis is conducted at this

step among the candidate architectures. Para-

metric diagrams within the model or integrat-

ing other tools can simulate system perfor-

mance with the chosen components so alterna-

tive solutions can be compared.

6. Validate and Verify System: Once a candidate

architecture has been chosen from the alterna-

tives, the system needs to be validated and ver-

ified to ensure the requirements are being met

and that stakeholder needs are satisfied. This

step uses inspection, demonstration, analysis,

and test activities to validate and verify the sys-

tem.

Finally, the modeling tool is how the language, de-

veloper, and method work together. The modeling tool

is a critical piece of software that maintains an under-

lying model of the system that can be used to display

many different viewpoints or diagrams, depending on

what is needed. The system model in a modeling tool

is comprised of model elements and relationships be-

tween those elements, and from those, diagrams can

be generated and displayed. When the source element

or relationship is modified or deleted, that change gets

carried out throughout the entire model, in all dia-

grams those elements or relationships appeared. The

authors of this paper used the CSM tool from No

Magic Inc., but other tools are available on the market

to accomplish the same goals with different user inter-

faces and feature sets.

 Reference Architectures

Complex systems require a well-thought-out archi-

tecture early on in the design process. The Department

of Defense (DoD) recognized this issue for their com-

plex systems, so they published the Department of De-

fense Architecture Framework (DoDAF) to establish

“Enterprise-level Architectures” and “Solution Archi-

tectures” throughout the department. DoDAF defined

an architecture as a “fundamental organization of a

system embodied in its components, their relationships

to each other and to its environment, and the principles

governing its design and evolution over time

(OASD/NII, 2010a).” This framework works well for

Kelly, S. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1100

major Defense Acquisition Programs, but small uni-

versity teams that turn over every academic cycle are

not able to take full advantage of this framework. Ref-

erence architectures can help alleviate that problem by

consolidating subject matter expertise and previous

relevant architectures into digestible models that sys-

tem designers can benefit from when creating a solu-

tion architecture (Cloutier et al., 2010). The DoD saw

the benefits of reference architectures and put out a

reference architecture description in 2010, describing

them as “an authoritative source of information about

a specific subject area that guides and constrains the

instantiations of multiple architectures and solutions"

(OASD/NII, 2010b). A reference architecture should

be an "elaboration of company (enterprise) or consor-

tium mission, vision, and strategy, facilitating a shared

understanding about the current architecture and the

vision on the future direction" (Cloutier et al., 2010).

Furthermore, it should be continuously developed and

improved over time as more teams use the architec-

ture.

Finally, reference architectures should have at

least the following elements (Cloutier et al., 2010):

1. Strategic Purpose: Goals, objectives, and a

specific purpose or problem to be addressed;

2. Principles: High-level foundational statements

of rules, culture, and values that drive technical

positions and patterns;

3. Technical Positions: Technical guidance and

standards that must be followed by solution ar-

chitectures (maybe data vocabulary/ data

model);

4. Patterns (Templates): Generalized representa-

tions (e.g., Viewpoints, Views, Diagrams,

Products, Artifacts) showing relationships be-

tween elements specified in the Technical Po-

sition; and

5. Vocabulary: acronyms, terms, definitions.

Reference architectures are being used in many in-

dustries, and at least one has been developed for Cu-

beSats already. As part of the International Council on

Systems Engineering (INCOSE) Space Systems

Working Group (SSWG), Kaslow, Ayres et al. (2017)

drafted a CubeSat Reference Model (CRM) to help

promote and institutionalize the practice of MBSE for

CubeSat development. Their CRM provides a reusable

logical architecture for a generic CubeSat and provides

a model to create a physical architecture from (Kaslow

et al., 2017). The SSWG's CRM did not meet some

specific needs for students, however. For example, the

CRM is not designed to generate traditional docu-

ments for system level reviews. There is no easy way

to generate a Concept of Operations document or Op-

erational Requirements Document, for example, and

that is a desire for a CubeSat reference architecture.

Second, the CRM does not appear to have a compo-

nent library or a generic, intuitive system that can be

easily adapted by students new to MBSE. Finally, the

CRM does not appear to have sufficiently detailed

value properties for the system to be useful for detailed

mission analysis using MATLAB and STK. Students

in university courses must design down to a greater

level of detail with many value properties for each sub-

system in order to perform the required analysis and

calculations. The CRM was quite useful though, in ex-

amining what subject matter experts deem important

for a CubeSat model, and for their various subsystem

internal block diagrams.

In summary, reference architectures can help sys-

tems engineers by providing a template, developed

from years of experience, to aid in the systems engi-

neering process. From the literature, it is clear that a

reference architecture would be particularly useful for

teams designing a CubeSat in a university setting; this

paper will address that need.

 Rapid Design Environment

Between the compressed schedule, the distraction

of other courses and projects, and the lack of modeling

experience for most students, designing a satellite in a

short timeframe is a challenge. Using AFIT as an ex-

ample, the space vehicle design sequence lasts just

nine months. Students start with a Mission Capabili-

ties Document (MCD), outlining the stakeholders' re-

quired capabilities and design constraints, and from

there, they're expected to derive mission, system, and

subsystem-level requirements, design the physical ar-

chitecture, simulate that design, and ultimately test

physical hardware to verify the requirements.

Throughout the process, they build a system model

Using a CubeSat Reference Architecture for Accelerated Model Development and Analysis

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1101

from scratch and use the model to create traditional

stakeholder documents, such as a Concept of Opera-

tions, Space Vehicle Requirements Document, etc.

They must also demonstrate traceability throughout

the model, from that original MCD through the tiers of

requirements and to the physical components them-

selves.

Clearly, developing brand new components within

this short time period is not feasible, so COTS compo-

nents or components developed by the university are

used to accomplish their objectives. A component li-

brary within the reference architecture would aid this

process, enabling teams to reuse or improve previous

model elements if applicable. Students could copy and

paste existing component blocks and simulate their

system using those blocks to quickly assess mission

feasibility with the chosen parts. Additionally, the pri-

mary mission stakeholders usually prefer traditional

documents instead of a complex system model, so the

model should aid in that process. In the past, students

would copy and paste diagram images or transcribe re-

quirement text into other tools, but this reference ar-

chitecture will automate this process to rapidly gener-

ate deliverable documentation while avoiding the ver-

sion control issues discussed previously.

In the university setting, the students generally

come from a wide range of experience levels, with

some having industry experience and others who have

zero experience with satellites or with MBSE. Further-

more, students generally need to collaborate remotely

due to their schedule demands. To address this, a

cloud-based collaborative environment would be use-

ful, and including examples and guidance will aid the

less experienced team members. Template tables and

diagrams should be provided, so students can focus

more on the design choices instead of the details of

model organization, structure, stereotypes, etc. In the

end, a reference architecture should support rapid de-

sign, simulation, prototyping, and testing of a system

by members of all experience levels.

 Developing a CubeSat Reference Architecture

AFIT currently provides a template model to get

students started with Stakeholder Analysis and devel-

oping a Concept of Operations, but support stops when

students move on to future courses that build upon that

foundation. Teams quickly diverge from using the

model after the focus shifts from MBSE to design

presentations and reports, so the need for a reference

architecture to assist students becomes apparent.

The primary goal of this reference architecture is

to encourage the use of MBSE throughout the entire

design sequence, all the way through the testing of

hardware, while incorporating faculty input to meet

the needs of three courses. In this course series, stu-

dents use the textbook "Space Mission Engineering:

The New SMAD" (Wertz, 2011), so that was used as

the primary source for equations, subsystem details,

and mission activity descriptions.

The reference architecture opens with an overview

diagram to show the organization of the model, as de-

picted in Figure 1. This figure shows the top-level

package structure, including hyperlinks to additional

organizational pages for each model section. This al-

lows for intuitive navigation, instead of always dig-

ging into the directory structure (called the "contain-

ment tree" in CSM) to search for sections. The first

package contains guidance for students, with a how-to

guide and example diagrams for those that are new to

MBSE.

The Component Library is a new feature inspired

by an AFIT-developed Small Unmanned Aircraft

System (SUAS) reference architecture (Jacques and

Cox, 2019). This feature is still a work in progress, but

the goal is to have a library of components for each

subsystem that can be reused in new models for rapid

prototyping. For example, if an engineer wants to

quickly test how different antenna options affect the

radio frequency link analysis, they can use the

available antenna options in the component library,

each having value properties that affect the

calculations in the Analysis section of the model. Each

subsystem has starter components contained within

the respective packages, and the intent is for this

library to be updated as new CubeSat designs are

created using the reference architecture. After a team

creates a working CubeSat model, those vetted

components can then be imported to the Component

Library for future reuse.

The third package (Generic CubeSat Model) is the

core of the reference architecture. The "Generic

Kelly, S. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1102

CubeSat Model" is the template from which teams will

Figure 1. Top-level model organization.

Figure 2. Requirements organization.

Using a CubeSat Reference Architecture for Accelerated Model Development and Analysis

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1103

start. It has a pre-built, generic CubeSat model with

diagrams, tables, and matrices provided with template

data that is meant to be replaced by the design teams.

It also contains the Document Generator tools that will

be discussed later. Each package within the "Generic

CubeSat Model" is hyperlinked to an informative

diagram linking to all of the included tools and

instructions for how to navigate them. An example

diagram is shown in Figure 2, with links to all relevant

requirement-related diagrams to fill out.

The CubeSat Physical Models package contains

the various physical instantiations of the reference

architecture. This could contain past projects to

reference if needed, but for the purposes of the

reference architecture development, it was used as the

testbed to validate the model. This is also where teams

will place their starting template to build from,

keeping the generic CubeSat model for future use.

 Use of CubeSat Reference Architecture for Re-

quirements Verification and Validation

One of the key functions of this CubeSat reference

architecture is the verification and validation section.

Figure 3 shows the analysis portion of the reference

architecture, which helps guide teams through the re-

quirement verification and validation processes. Be-

Figure 3. Analysis organization.

Kelly, S. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1104

cause the CubeSat component blocks include prede-

fined value properties, parametric diagrams could be

created to perform a variety of calculations based off

these values. An example of the included parametric

analysis is associated with the thermal properties of

the system, shown in Figure 4. This thermal analysis

parametric diagram includes a constraint block with

MATLAB code. This MATLAB code uses value

properties from the “Thermal Subsystem” block (radi-

ating area, emissivity, absorptivity, specific heat ca-

pacity, etc.), some parameters from the “Orbit” block

(altitude, period, etc.), and any other value properties

needed to perform the calculations. The MATLAB

script then displays graphs that change automatically

if the user swaps out a new thermal subsystem block,

changes the altitude, or otherwise modifies the value

properties. The constraint blocks can integrate

engineering analysis into SysML modeling, and sev-

eral analysis patterns were included in the reference

architecture to assist future teams performing rapid

analysis while keeping all work inside the system

model.

The objective for the Analysis section of the refer-

ence architecture is to keep as much analysis contained

within the model as possible, using the actual value

properties to perform the calculations. Instead of mov-

ing values to other tools, the analysis calculations are

kept within the model. Additional functionality can be

added as well, depending on the requirements. For ex-

ample, Figure 5 shows how a requirement for a Near

Infrared (NIR) Ground Sample Distance (GSD) of less

than 4 m could be tested using the same methodology.

In this parametric diagram, the NIR GSD is calculated

based off the imager's value properties and the Cu-

beSat's altitude. This result is compared to the require-

ment and will automatically flag the result as green or

red, depending on if it meets the requirement's con-

straint block or not, as shown in Figure 6. In this ex-

ample, an engineer could tweak the design variables

Figure 4. Thermal analysis.

Using a CubeSat Reference Architecture for Accelerated Model Development and Analysis

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1105

and instantly see how the GSD is affected, which

would be very useful in the early stages of design.

In addition to the parametric diagrams, teams will

need to perform hardware tests in the lab, and the ref-

erence architecture accounts for that, as well. There is

a package for defining hardware tests for each subsys-

tem with features to help keep everything organized.

Figure 7 shows the testing diagram for the Electrical

Power Subsystem (EPS). The user can access the ap-

plicable requirements in the linked subsystem require-

ment table, create test activities to verify requirements,

and include descriptions of each test in the included

test description table. The linked subsystem require-

ment tables are automatically generated and also in-

clude color coding to highlight testing status. As tests

are completed, the user can choose a verification status

from a dropdown menu (such as Requirement Veri-

fied, Test Not Completed, Testing in Progress, etc.) to

keep track of the test campaign in one standardized lo-

cation. Each subsystem has a placeholder for test data

and results within the test tables, so as teams conduct

real-world testing, that data can be accessed from the

model as well. In the future, more work can be done in

this area to create a centralized test data repository and

more detailed test activity diagram examples.

 Use of CubeSat Reference Architecture for

Generating Traditional Documentation

This reference architecture includes a polished

document generator to create traditional documents

for stakeholders. CSM can use Apache's Velocity

Template Language (VTL) to export model elements

into external tools such as Microsoft Word and Mi-

crosoft PowerPoint, so by including Microsoft Word

file templates with tailored VTL code, documents can

be automatically generated as needed as the model is

updated. Even narrative text, such as introduction par-

agraphs or other lead-in text, can be included within

the model as notes. The reference architecture includes

Figure 5. Image quality parametric diagram.

Figure 6. Image quality results.

Kelly, S. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1106

document generators for a Stakeholder Analysis Re-

port (SAR), Concept of Operations (CONOPS), Mis-

sion Requirements Document (MRD), Operational

Requirements Document (ORD), Space Vehicle Re-

quirements Document (SRD), Mission Capabilities

Document (MCD), and a document to help start Test

Plans. The templates were based off of AFIT course

requirements, but they may be tailored if different sec-

tions are required, or if the order of sections needs to

be modified. Additionally, the reference architecture

includes a template for a master document, which ex-

ports all model elements that the team generated in an

intuitive and visual format. This is useful as it contains

all code that a user may wish to use if they want to

create a new document template that was not provided.

The generic model document can be used as a template

to build custom documents from. The generic template

is commented so users can know how it works and

what to copy for a new document, as this template lan-

guage is not well explained in the software user's man-

ual.

The goal of these document generators is to en-

courage the use of the model throughout the design

and build process. Historically, teams would copy and

paste model elements into reports and transcribe re-

quirement text into Microsoft Word or PowerPoint ta-

bles for reviews or presentations. This led to version

control issues, such as requirement text being updated

in the PowerPoint table but not in the underlying

model. By keeping everything entirely within the

model, these document generators take most of the

manual work out of the process. Teams can focus on

ensuring the model is accurate instead of needing to

cross-check every diagram each time a change is

made.

 Mission Modeling on the AFIT CubeSat Bus

AFIT's CubeSat reference architecture is not only

designed for classroom projects. AFIT has their own

space program, and this reference architecture is in-

tended to assist with its mission modeling. AFIT uses

a 6U-sized bus called the "Grissom Bus" for its up-

coming missions, and this reference architecture has

that bus included in the component library along with

other payloads and subsystem components that AFIT

has in stock. As future Grissom-based CubeSats are

designed at AFIT, this reference architecture can be

used to rapidly prototype design configurations using

the available components and the built-in analysis

tools. Two upcoming missions, Grissom-1 and Gris-

som-P, have already been modeled using this refer-

ence architecture as test cases. Their requirements and

structure were created, and stakeholder documentation

was generated to ensure the process and tools worked

for other models. Additional research is being done us-

ing this baseline reference architecture to easily simu-

late multiple AFIT payloads using the Grissom bus,

and it all relies on the built-in structure and value prop-

erties associated with components. The goal is to be

able to quickly test multiple design configurations us-

ing the same bus. For example, two payloads on the

Figure 7. EPS tests.

Using a CubeSat Reference Architecture for Accelerated Model Development and Analysis

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1107

same bus may have conflicting pointing requirements

or a combined power draw that exceeds the power

budget requirement, and the simulations should high-

light these conflicts. As missions such as the Grissom-

based missions are fully modeled in this architecture,

the analysis tools can be used to model various mission

phases or activities. For example, the relevant orbital

parameters can be used to automatically create an STK

scenario, displaying a visual simulation of a ground

station contact using parametric diagrams in the refer-

ence architecture.

Grissom technicians at AFIT were consulted dur-

ing the development of this reference architecture to

determine what value properties should be included,

and those mission modeling tools are actively being

developed using this reference architecture as a base-

line.

 Future Work and Conclusion

To date, the CubeSat reference architecture effort

has been to establish a working template to test with

the next cohort of Space Systems Engineering students

at AFIT. As the course sequence curriculum changes

and as more people look at and use this reference ar-

chitecture, improvements can and should be made for

the benefit of future teams. The reference architecture,

as is, has been tested by prior students, but every team

has different styles and preferences, and the reference

architecture can reflect those differences.

The Component Library will be expanded as the

reference architecture is used by design teams. After

several iterations, there will be several different types

of payloads to choose from, multiple propulsion sys-

tems, chassis sizes, etc. The Component Library also

contains other non-physical blocks for reuse as well,

such as constraint blocks for analysis, object flows,

value types, and custom stereotypes.

The Analysis section includes several working ex-

amples that work with the generic component blocks,

but as future teams add working MATLAB code or

STK configurations to their analysis, those can be

saved in the Component Library as well. Future teams

can copy any relevant constraint blocks to use in their

own parametric diagrams, and over time, a wealth of

working analysis can be saved and continuously im-

proved upon.

Finally, the verification functionality built into the

model primarily addresses technical performance, not

programmatic requirements. Further work should be

done to add functionality to validate top level mission

requirements such as schedule or regulatory require-

ments.

In summary, this first attempt at a CubeSat refer-

ence architecture is designed to be improved over

time. Currently, it will guide teams and constrain them

in a way that makes the modeling effort easier so they

can focus on the design details and technical analysis.

Students new to MBSE should be able to use this

model, and those more familiar with the tool can add

new features for future teams to take advantage of. It

will also be the platform upon which future mission

modeling tools are based to integrate STK or similar

tools for more in-depth analysis. The goal here is to

keep system data within the model, and this reference

architecture will help encourage teams to do that.

Acknowledgments

The author would like to thank the Center for

Space Research and Assurance (CSRA) at AFIT for

their guidance throughout this research.

References

Buede, D. and Miller, W. (2016): The Engineering De-

sign of Systems: Models and Methods (3rd ed.).

Hoboken, NJ: John Wiley and Sons.

Cloutier, R., Muller, G., Verma, D., Nilchiani, R.,

Hole, E., and Bone, M. (2010): The Concept of

Reference Architectures. Systems Engineering.

Vol 13: 14-27. doi 10.1002/sys.20129.

Delligatti, L. (2014): SysML Distilled: A Brief Guide

to the Systems Modeling Language, Addison-

Wesley Professional.

Estefan, J. (2008): Survey of Model-Based Systems

Engineering (MBSE) Methodologies (rev. B). Se-

attle, WA, US: International Council on Systems

Engineering (INCOSE). INCOSE-TD-2007-003-

Kelly, S. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 3, p. 1108

02. Available at: http://www.omgsysml.org/

MBSE_Methodology_Survey_RevB.pdf (ac-

cessed Nov. 5, 2020).

Hoffmann, H.P. (2020): Systems Engineering Best

Practices with the Rational Solution for Systems

and Software Engineering. Deskbook Release

3.1.2 ed. IBM. Available at:

https://www.ibm.com/support/pages/model-

based-systems-engineering-rational-rhapsody-

and-rational-harmony-systems-engineering-desk-

book-312 (accessed Nov. 18, 2020).

Jacques, D. and Cox, A. (2019): The Use of MBSE

and a Reference Architecture in a Rapid Prototyp-

ing Environment, Tech. Rep., Air Force Institute

of Technology. Available at: https://ndiastor-

age.blob.core.usgovcloudapi.net/ndia/2019/sys-

tems/Wed_22502_Jacques.pdf (accessed Nov. 4,

2020).

Karvinen, M., Tikka, T., and Praks, J. (2015): Using

Hobby Prototyping Boards and Commercial-Off-

The-Shelf (COTS) Components for Developing

Low-Cost, Fast-Delivery Satellite Subsystems. J.

of Small Satellites, Vol. 4, No. 1, pp. 301–314.

Available at: https://jossonline.com/using-hobby-

prototyping-boards-and-commercial-off-the-

shelf-components-for-developing-low-cost-and-

fast-delivery-satellite-subsystems/ (accessed Dec.

3, 2020).

Kaslow, D., Ayres, B., Cahill, P. et al. (2017): Devel-

oping a CubeSat Model-Based Systems Engineer-

ing (MBSE) Reference Model - Interim Status 3,

Tech. Rep., IEEE. doi 10.1109/AERO. 2017.

7943691 (accessed Nov. 5, 2020).

Office of the Assistant Secretary of Defense, Net-

works and Information Integration (2010a): The

DoDAF Architecture Framework Version 2.02.

Available at: https://dodcio.defense.gov/library/

dod-architecture-framework/ (accessed Nov. 5,

2020).

Office of the Assistant Secretary of Defense, Net-

works and Information Integration (2010n): Refer-

ence Architecture Description. Available at:

dodcio.defense.gov/Portals/0/Documents/Ref_

Archi_Description_Final_v1_18Jun10.pdf (ac-

cessed Nov 5, 2020).

Object Management Group (2011): INCOSE Object-

Oriented Systems Engineering Method (OOSEM).

Available at: https://www.omgwiki.org/MBSE/

doku.php?id=mbse:incoseoosem (accessed Oct.

15, 2020).

Pradhan, K. and Cho, M. (2020): Shortening of Deliv-

ery Time for University-Class Lean Satellites. J. of

Small Satellites. Vol. 9, No. 1, pp. 881–896. Avail-

able at: https://jossonline.com/wp-content/uploads

/2020/03/Final-Pradhan-Shortening-of-Delivery-

Time-for-University-Class-Lean-Satellites.pdf

(accessed Dec. 2, 2020).

Walden, D., Roedler, G., Forsberg, K. et al. (2015):

Systems Engineering Handbook: A Guide for Sys-

tem Life Cycle Processes and Activities (4th ed.).

San Diego, CA: INCOSE. Available at: https://

www.incose.org/products-and-publications/se-

handbook (accessed Oct. 21, 2020).

Weilkiens, T. (2016): SYSMOD - The Systems Mod-

eling Toolbox (2nd ed.). MBSE4U Booklet. Avail-

able at: https://mbse4u.com/product/sysmod/ (ac-

cessed Dec. 16, 2020).

Wertz, J. R., Everett, D. F., and Puschell, J. J. (2011):

Space Mission Engineering: The New SMAD (1st

ed.). Torrance, CA: Microcosm Press.

